POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name Mechanics and strength of materials

Course

Field of studyYear/SemesterLogistics1/1Area of study (specialization)Profile of studyLevel of studygeneral academicLevel of studyCourse offered inFirst-cycle studiespolishForm of studyRequirementspart-timecompulsory

Number of hours

Lecture	Laboratory classes	Other (e.g. online)
10		
Tutorials	Projects/seminars	
10		
Number of credit points		
5		

Lecturers

Responsible for the course/lecturer:

dr Marcin Rodak

Responsible for the course/lecturer:

email: marcin.rodak@put.poznan.pl

tel. 61 665-2175

Wydział Inżynierii Mechanicznej

ul. Piotrowo 3 60-965 Poznań

Prerequisites

Has a basic knowledge in mathematics

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Ability to solve basic tasks in geometry and mathematical analysis.

Ability to search for necessary information in literature, databases, catalogues.

The ability to self-study.

Using information and communication techniques appropriate to carry out engineering tasks.

Course objective

Introduction to the basic principles of mechanics of deformable bodies.

Course-related learning outcomes

Knowledge

- 1. has basic knowledge about mechanics of deformable bodies [P6S_WG_02]
- 2. has knowledge about the properties of materials used in mechanical engineering [P6S_WG_03]
- 3. has basic knowledge about the principles of design and operation of machines [P6S_WG_02]

Skills

- 1. is able to carry out measurements of mechanical properties of materials [P6S_UW_03]
- 2. is able to solve a simple design task [P6S_UW_06]
- 3. is able to design a part or subassembly of the machine [P6S_UO_01]

Social competences

- 1. understands the need for lifelong learning
- 2. is aware of the importance of technical issues in the creation of products [P6S_KO_02]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture, tutorials - written test and assessment of activity in the classroom:

3 50.1% -70.00%

4 70.1% -90.0%

5 from 90.1%

Programme content

Conditions of equilibrium of a rigid body.

Classification of loads acting on an elastically deformable body, stresses and internal forces. Internal forces in the bar.

Tests of mechanical properties of materials.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Tension and compression. Strength conditions, generalized Hooke's law.

Tension and compression within the limits of elasticity, the statically determinate and indeterminate bar systems.

Moments of inertia of flat figures.

Torsion of round bars.

Graphs of bending moments and shear forces. Bending of beams.

Normal stresses in beams.

Beam Design. Differential equation for beam deflection lines and beam deflection lines.

Statically indeterminate beams.

Teaching methods

Live lecture with multimedia illustrations, tutorials with problems solved on the board.

Bibliography

Basic

1. M. Ostwald, Podstawy wytrzymałości materiałów i konstrukcji, WPP, Poznań 2017

- 2. Ostwald M., Wytrzymałość materiałów i konstrukcji. Zbiór zadań. Wydawnictwo PP, Poznań, 2018.
- 3. Misiak J., Mechanika techniczna t.1, WNT, Warszawa, 1998, 2012.

Additional

1. Magnucki K., Szyc W., Wytrzymałość materiałów w zadaniach: pręty, płyty i powłoki obrotowe, Wydawnictwo Naukowe PWN, 2000.

2. Dyląg Z., Jakubowicz A., Orłoś Z., Wytrzymałość materiałów t.1 i 2, WNT, Warszawa, 2000.

3. Badania eksperymentalne w wytrzymałości materiałów. Pod redakcją S. Joniaka, WPP. 2006.

Breakdown of average student's workload

	Hours	ECTS
Total workload	125	5,0
Classes requiring direct contact with the teacher	20	1,0
Student's own work (literature studies, preparation for	105	4,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate